000000000

0000000

[Pressure ridging](#page-1-0) [Discrete element method](#page-4-0) [Small-scale simulations](#page-13-0) [Larger-scale simulations](#page-20-0) [Conclusions](#page-24-0) [Appendix](#page-25-0) 0000

 \cap

A ロト K 何 ト K ヨ ト K ヨ ト ニヨー Y Q (^

 00

Floe-scale ridging in discrete element models for sea ice

Anders Damsgaard^{1,2}, Olga Sergienko², and Alistair Adcroft²

1: Department of Geoscience, Aarhus University 2: Geophysical Fluid Dynamics Laboratory, Princeton University

<https://adamsgaard.dk>, <anders@adamsgaard.dk>

Modeling the granular nature of sea ice workshop 2021

Convergent sea-ice flow

Mark Tschudi

Pressure ridging in sea ice

(ロ) (個) (ミ) (ミ) = ウQQ

000000000

0000000

[Pressure ridging](#page-1-0) [Discrete element method](#page-4-0) [Small-scale simulations](#page-13-0) [Larger-scale simulations](#page-20-0) [Conclusions](#page-24-0) [Appendix](#page-25-0) 0000

 Ω

Objectives

- Particle-based methods for sea ice may be advantageous in high-resolution climate models.
	- In established models, ice strength increases with ice thickness.
	- Analyze mechanical interaction of two simulated ice floes during compression.
	- Generalize observed compressive rheology and apply to larger scale particle-based model.
	- Explore effects of ridging on large-scale rheology and strain distribution.

Discrete element method

イロト (個)トイミト (ミ)トーミー りんぺ

Granular contact search

a) All-to-all b) Radial cut-off distance c) Coarse orthogonal grid

Damsgaard 2015 Ph.D. thesis

Ice-ocean-atmosphere interpolation

イロト イタト イミト イミト ニヨー りんぺ

Discrete element modeling: Unbonded mechanics

イロト イ母 トイミト イミト ニヨー りんぺ

Discrete element modeling: Unbonded mechanics

イロト イ母 トイミト イミト ニヨー りんぺ

 $-\mu ||f_{n}||$

 Ω

 \circ

Cohesionless discrete element modeling: Contact rheology

 Ω

Cohesive discrete element modeling: 2D bond mechanics

イロト (個)トイミト (ミ)トー ミー りん(^

 Ω

 \circ

 $\mathcal{X},$

 $\int \Theta_{s,j}$

 $\overline{}$

Cohesive discrete element modeling: 3D bond mechanics

0000000

[Pressure ridging](#page-1-0) [Discrete element method](#page-4-0) [Small-scale simulations](#page-13-0) [Larger-scale simulations](#page-20-0) [Conclusions](#page-24-0) [Appendix](#page-25-0) 0000

 Ω

Granular dynamics code

A Julia package for granular mechanics.

- Purpose-written discrete element method code
- "Sandbox" for granular simulation (flexibility over performance)
- Free & open source: <https://src.adamsgaard.dk/Granular.jl>
- Currently being rewritten in C (<https://src.adamsgaard.dk/granular>)

Two colliding ice floes: Simulation setup

イロト (個)トイミト (ミ)トーミー りんぺ

 Ω

 OQ

Compressive experiments with varying thicknesses

Compressive experiments with varying thicknesses

 $\circledcirc \circledcirc \circledcirc$ Ë,

[Pressure ridging](#page-1-0) [Discrete element method](#page-4-0) **[Small-scale simulations](#page-13-0)** [Larger-scale simulations](#page-20-0) [Conclusions](#page-24-0) [Appendix](#page-25-0)

000 000 0000000000 00000000 0000000 000 000 000 000 000 00

Failure stages during compression

Failure stages during compression

 $\leftarrow \Xi \rightarrow \leftarrow \Xi \rightarrow$ $\circledcirc \circledcirc \circledcirc$ È

 Ω

 \circ

Small-scale experiment and parameterization

 $\mathcal{A} \equiv \mathcal{F} \rightarrow \mathcal{A} \stackrel{\text{def}}{\Longrightarrow} \mathcal{A} \stackrel{\text{def}}{\Longrightarrow} \mathcal{F} \rightarrow \mathcal{A} \stackrel{\text{def}}{\Longrightarrow} \mathcal{F}$ 重し $\circledcirc \circledcirc \circledcirc$

Ice thickness and modeled compressive strength

←ロト ←個 ト ← ミト ← ミト 目 $\circledcirc \circledcirc \circledcirc$

Idealized ice-floe contact modes

b) Post-failure contact geometry

イロト イ母 トイミト イヨト ニヨー りんぺ

 $||\boldsymbol{f}^{ij}_\mathrm{n} + \boldsymbol{f}^{ij}_\mathrm{t}$

(1)

[Pressure ridging](#page-1-0) [Discrete element method](#page-4-0) [Small-scale simulations](#page-13-0) [Larger-scale simulations](#page-20-0) [Conclusions](#page-24-0) [Appendix](#page-25-0)

Idealized ice-floe contact modes

 $\left| \frac{j}{\mathrm{t}} \right| \leq K_\mathrm{Ic}$ min $\left(h^i, h^j \right)^{3/2}$

b) Post-failure contact geometry

$$
||\boldsymbol{\sigma}_t^{ij}|| \leq \mu ||\boldsymbol{\sigma}_n^{ij}|| \tag{2}
$$

$$
\boldsymbol{f}_{\mathrm{n}}^{ij}=(\boldsymbol{\sigma}_{\mathrm{t}}^{ij}\cdot\hat{\boldsymbol{n}}^{ij})A^{ij}
$$
 (3)

$$
\boldsymbol{f}^{ij}_t = (\sigma^{ij}_t \cdot \hat{\boldsymbol{t}}^{ij}) A^{ij}_{\text{max}} \\[0.2cm] \boldsymbol{f}^{ij}_{\text{max}} = \sigma^{ij}_{\text{max}} \boldsymbol{f}^{ij}_{\text{max}} \\[0.2cm] \boldsymbol{f}^{ij}_{\text{max}} = \sigma^{ij}_{\text{max}} \boldsymbol{f}^{ij}_{\text{max}}
$$

 Ω

 \circ

Ridging parameterization on a larger scale

イロト (個)トイミト (ミ)トー ミー りん(^

 Ω

Ridging parameterization on a larger scale

 4 ロト 4 伊 ト 4 ミト 4 ミト \equiv $\circledcirc \circledcirc \circledcirc$

000000000

[Pressure ridging](#page-1-0) [Discrete element method](#page-4-0) [Small-scale simulations](#page-13-0) [Larger-scale simulations](#page-20-0) [Conclusions](#page-24-0) [Appendix](#page-25-0) 0000

 00

Conclusions

- Ice-floe mechanics are simulated using particles connected with breakable bonds
- Elasticity provides large resistance during compression of thick ice floes
- Weakening after compressive failure causes ridging to be spatially localized
- Refreezing is expected to heal the yield strength by adding cohesion between ice-floe pieces

Appendix

イロト (個)トイミト (ミ)トーミー りんぺ

 Ω

Sea-ice thermodynamics: Three-layer model

